Let $(\nabla, \Phi)$ be a $G_2$-monopole such that
- $E^\psi (\nabla, \Phi) < \infty$,
- $r^2 F_\nabla^{14} \in L^\infty (X)$.
Then
- $|\Phi| \rightarrow m > 0$, (the mass of the monopole)
- $|\nabla \Phi| = O (r^{- 6})$, (sharp)
- $|[F_\nabla, \Phi]|$ decays exponentially,
- $(\nabla, \Phi)|_{\Sigma_R} \rightarrow (\nabla^\infty, \Phi^\infty)$, (in some gauge)
- $\nabla^\infty \Phi^\infty = 0$,
- $\nabla^\infty$ is pseudo-Hermitian–Yang–Mills:
\begin{equation}
\Lambda F_{\nabla^\infty} = 0, \quad \& \quad F_\nabla^{0,2} = 0.
\end{equation}
In progress: generalization to $G_2$-manifolds with fibred ends (and fast enough volume growth) and higher rank.