We conjecture:
Assume that $X$ is an $n$-dimensional, closed, oriented, Riemannian manifold and $\lambda \in \mathrm{Spec} \left( (\nabla^0)^* \nabla^0 \right)$.
Then for all $\Phi_0 \in \ker \left( (\nabla^0)^* \nabla^0 - \lambda \mathbb{I} \right)$ of unit $L^2$-norm, there exists a branch of triples
\begin{equation}
\left( A_r, \phi_r, \epsilon_r \right) = \left( A_0 r^2 + O \left( r^4 \right), \Phi_0 r + \Psi_0 r^3 + O \left( r^5 \right), \epsilon_0 r^2 + O \left( r^4 \right) \right),
\end{equation}
such that for each $r \in [0, r_0)$ the pair $\left( \nabla^0 + A_r, \phi_r \right)$ solves the Ginzburg–Landau equations with $\tau = \tfrac{\lambda}{\kappa^2} + \epsilon_r$.
Furthermore, $\Phi_0$ determines $A_0$, $\Psi_0$, and $\epsilon_0$ explicitly.