Let $(\nabla, \Phi)$ be a $G_2$-monopole such that
$E^\psi (\nabla, \Phi) < \infty$ and $r^2 F_\nabla^{14} \in L^\infty (X)$. Then
- $|\Phi| \rightarrow m > 0$, (the mass of the monopole)
- $\underbrace{|\nabla \Phi| = O (r^{- 6})}_{\mbox{sharp}}$ and $|[F_\nabla, \Phi]|$ decays exponentially,
- In some gauge: $(\nabla, \Phi)|_{\Sigma_R} \rightarrow (\nabla^\infty, \Phi^\infty)$.
- $\underbrace{\Lambda F_{\nabla^\infty} = 0, F_\nabla^{0,2} = 0}_{\mbox{pseudo-Hermitian–Yang–Mills}}$ and $\underbrace{\nabla^\infty \Phi^\infty = 0}_{\mbox{reduction of the bundle to $L \oplus L^*$}}$.
- $E^\psi (\nabla, \Phi) = 4 \pi m \left\langle \: \alpha \cup \psi_\infty \: \middle| \: \left[ \Sigma \right] \: \right\rangle$, where $\alpha = c_1 (L)$ is the monopole class.
Corollaries: Finite mass, monopole class, decay for (co)kernel elements of the linearization, and Fredholm theory.